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Abstract
This paper considers the derivation of the Magnus force from a model system
consisting of a single vortex imbedded in a uniform positive background
coupled with a mutual interaction charged boson. By eliminating the charged
boson degree of freedom, the effective action of a single vortex is obtained and
can be used to derive the Hellmann–Feynman force. From the ground state
contribution a Magnus force is obtained.

PACS numbers: 03.50.De, 03.65.Vf

The Magnus force or lift force of classical hydrodynamics arises as a consequence of its motion
through the fluid. The argument for the existence of a Magnus force on a vortex line in the
type II superconductor was first proposed by Friedel et al [1] and later developed and extended
by Nozieres and Vinen [2] by including pinning and friction. It was believed that the existence
of a vortex is a general property of the system. In this paper we show that the existence of
the Magnus force is a general property of a vortex. We propose a microscopic derivation
of the Magnus force from a model system consisting of a single vortex coupled to mutual-
interacting charged bosons and imbedded in a uniform positive background. By eliminating
the charged boson degree of freedom an effective Lagrangian is obtained containing the
generalized Hellmann–Feynman force which can be used to derive the Magnus force. This
force can be obtained by considering that the ground state contribution leads to the Magnus
force.

The full Hamiltonian for a quantized vortex coupled to an interacting charged boson
imbedded in a positive uniform background is given as

Ĥ = Ĥ v + ĥc + ĥ. (1)

Here, Hv( �̂P , �̂R) is the Hamitonian for a quantized vortex in which �R denotes the position of
the vortex and �P its conjugate momentum. The second term

ĥc = − e2

2m2c

∑
n� =n′

pi
nT

ij (�xn − �xn′)p
j

n′ (2)
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with T ij (�x) = (δij |�x|−1 + xixj |�x|−3)/2c, the current–current interaction, and m is the boson
mass. The Hamiltonian ĥc represents the lowest-order relativistic effects, an interaction first
obtained by Darwin in 1920 [3]. The last term

ĥ =
∑
n

(
�̂pn − 2e

c
�̂a(�̂xn − �̂R)

)2

2m
+

1

2

∑
n� =n′

U( �̂xn − �̂xn′) + ĥb (3)

is the Hamiltonian representing N bosons with negative charge −e, interacting with the vector

potential �a( �̂xn − �̂R) and satisfying the equation
∮ �a(�xn − �R) · d�l = φ0 = hc/2e. The

U( �̂xn − �̂xn′) term represents the mutual Coulomb interaction. Finally ĥb is the uniform
positive background and

ĥb = −
∑
n

∫
d3 �x ′e2n̄( �x ′)| �xn − �x ′|−1 (4)

where n̄( �x ′) is the charge distribution of the lattice and accounts for the interaction with the
uniform positive background charge en̄.

Next, the full Hamiltonian Ĥ can be separated into two parts—the internal and the
collective. The internal part, ĥi = ĥ + ĥc, is dependent on the centre point of the vortex, �R,
and not explicitly on the conjugate momentum of the vortex, �P . The collective Hamiltonian,
Ĥ v , is the Hamiltonian for a quantized vortex.

In considering the probability amplitude for a quantum process starting from the initial
position, �xa1, . . . , �xaN , �Ra at ta, and returning to the final position �xb1, . . . , �xbN , �Rb at tb, the
propagator can be written as

K(�x1b, . . . , �xNb, �Rb, tb; �x1a, . . . , �xNa, �Ra, ta) =
∑
m

∑
n

�m(�x1b, . . . , �xNb; �Rb)

× 〈m; �Rb|〈 �Rb| exp
[
− i

h̄
Ĥ (tb − ta)

]
| �Ra〉|n; �Ra〉�∗

n(�x1a, . . . , �xNa; �Ra). (5)

By inserting complete sets of coordinate states and a complete set of momentum states at
t = tk, with ε = tb−ta

L
it is possible to consider the following relationship as ε → 0

〈 �Rk| exp
[
− i

h̄
Ĥ ε
]
| �Rk−1〉 ≈ 〈 �Rk| exp

[
− i

h̄
�Hv( �̂P , �̂R)ε

]
| �Rk−1〉 exp

[ i

h̄
ĥi(�̂x, �̂p; �Rk)ε

]

=
∫

d �P k exp

[
i

h̄
ε

[
�P k ·

( �Rk − �Rk−1

ε

)
− Ĥ v( �̂P , �̂R)

]]
exp

[ i

h̄
ĥi (�̂x, �̂p; �Rk)ε

]
.

(6)

Then equation (5) can be expressed as

K(�x1b, . . . , �xNb, �Rb, tb; �x1a, . . . , �xNa, �Ra, ta)

=
∑
m

∑
n

�m(�x1b, . . . , �xNb; �Rb)�
∗
n(�x1a, . . . , �xNa; �Ra)

×
∫

D[ �P ]D[ �R]Tmn exp
[
− i

h̄
S[ �R(t), �P (t)]

]
(7)

where S[ �R(t), �P (t)] = ∫ tb
ta

[ �P · �̇R − Hv( �P , �R)]dt is the action of the collective motion

along the path between a and b. Here, �n(�x1a, . . . , �xNa; �Ra)(�m(�x1b, . . . , �xNb; �Rb)) are
the wavefunctions of the internal part, ĥi = ĥ + ĥc at �R = �Ra( �Rb) with eigenvalue
En( �Ra)(Em( �Rb)) and the external variable �R = �Ra( �Rb). Tmn is just the transition amplitude
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between the quantum states from �m(�x1b, . . . , �xNb; �Rb) to �n(�x1a, . . . , �xNa; �Ra) and is given
by

Tmn = 〈m; �Rb| exp
[
− i

h̄
ĥi ( �R(tb))ε

]
· · · exp

[
− i

h̄
ĥi ( �R(ta))ε

]
|n; �Ra〉. (8)

By inserting the completeness relationship holding for the internal state ĥi at each point of the
external variable �Rk ,

∑
jk

|jk; �Rk〉〈jk; �Rk| = 1, equation (8) can be written as

Tmn =
∑
j1

· · ·
∑
jL

〈m; �Rb| exp
[
− i

h̄
ĥi ( �R(tb))ε

]
|jL; �RL〉 · · ·

×〈j1; �R1| exp
[
− i

h̄
ĥi( �R(ta))ε

]
|n; �Ra〉. (9)

In the adiabatic approximation, an example is Berry’s 1985 phase [4], the quantum transition
between states with the same quantum number n only is picked up and is described by the
matrix element 〈n; �Rk+1|e− i

h̄ ĥi( �Rk)ε|n; �Rk〉. Thus by using the approximate relation

〈n; �Rk+1| exp
[ i

h̄
ĥi( �Rk)ε

]
|n; �Rk〉 ≈ [1 − 〈n; �R| �∇R |n; �R〉 · �̇Rε] exp

[
− i

h̄
εEn( �Rk)

]
= exp

[ i

h̄
ε(−En( �Rk) + ih̄ �An,n · �̇R)

]
(10)

equation (8) becomes

Tmn = δm,n exp

[
− i

h̄

∫ tb

ta

(En( �R) − ih̄ �An,n · �̇R)dt

]
(11)

where

�An,n = 〈n; �R| �∇R |n; �R〉. (12)

The vector potenial �An,n implies the property of the internal part of the Hamiltonian ĥi in the
form of ket vector |n; �R〉. We arrive at the effective path integral associated with the adiabatic
approximation of the dynamical variable �R,

K(�x1b, . . . , �xNb, �Rb, tb; �x1a, . . . , �xNa, �Ra, ta)

=
∑
m

∑
n

�m(�x1b, . . . , �xNb; �Rb)�
∗
n(�x1a, . . . , �xNa; �Ra)Kmn (13)

Kmn gives the usual dynamical evolution of the wavefunction of the internal part with an
additional effect from the motion of the external variable over all possible paths. Therefore,
the evolution kernel Kmn can be expressed as,

Kmn = δm,n

∫
D[ �P ]D[ �R] exp

[
i

h̄

[∫ tb

ta

dt ([ �P · �̇R − Hv] − Em( �R) + ih̄ �An,n · �̇R)

]]
(14)

where, Leff
n,n = [ �P · �̇R−Hv]−En( �R)+ih̄ �An,n· �̇R is the effective Lagrangian corresponding with

Schrödinger’s equation for molecular physics given by the Born–Oppenheimer approximation
[5], a matrix-valued Schrödinger operator for the nuclear wavefunction. If the external variable
�R(t) is to describe an adiabatic motion returning via a closed path C then the third term in the
exponent of equation (14) is immediately recognized as Berry’s 1985 phase [4]:

%n = ih̄
∮
C

〈n; �R| �∇R|n; �R〉 · d �R. (15)

To obtain the Hellmann–Feynman force, we define the force on the vortex from the Lagrange
equation

∂

∂ �RLeff
m − d

dt

∂

∂ �̇R
Leff

m = 0. (16)
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Then the new force, which is in addition to the original force, can be written as

FX
m = ih̄ṘX

[〈
∂�m

∂Y
|∂�m

∂X

〉
−
〈
∂�m

∂X
|∂�m

∂Y

〉]
− ∂

∂X
Em( �R) (17)

FY
m = ih̄ṘY

[〈
∂�m

∂Y
|∂�m

∂X

〉
−
〈
∂�m

∂X
|∂�m

∂Y

〉]
− ∂

∂Y
Em( �R). (18)

The above result can be easily recognized as the Hellmann–Feynmen theorem [6]. Next
the Magnus force can be derived by using the many-body wavefunction proposed by Ao and
Thouless [7]. This wavefunction contains both amplitude and phase varying in space and time

�0(�x1, . . . , �xN ; �R) = �̃0(�x1, . . . , �xN ; �R) exp


 i

h̄

N∑
j=1

+(�xj − �R)


 (19)

where �̃0, in the absence of the external magnetic field, is the many-body wavefunction of
a superconductor. The ground state wavefunction depends on the positions of the N bosons
in the system. Since the wavefunction can be determined in such a way that the dependence
on �x is entirely through �x − �R, the partial derivatives with respect to �R can be replaced by a
sum over partial derivatives with respect to the particle coordinate �xi . The probability of any
particular configuration is proportional to |�̃0|2, with the normalization,∫

· · ·
∫

|�̃0|2d2�x1 · · · d2�xN = N (20)

and ∫
· · ·
∫

|�̃0|2d2�x1 · · · d2�xN−1 = ρ(�x, �R) (21)

where ρ(�x, �R) is the probability density. The probability density ρ(�x, �R) must satisfy the
boundary conditions; that is, the density ρ(�x, �R) must vanish continuously at �x = �R as well
as approach the background density ρ0 as |�x − �R| → ∞. Therefore, the Magnus force from
the first term in equations (17) and (18) can be defined as,

�FMagnus = �̇R × ih̄ �∇R × 〈�0; �R| �∇R |�0; �R〉. (22)

By virtue of the property of the many-body wavefunction and the ground state condition, the
Magnus force becomes

�FMagnus = �̇R × �∇R ×
∫

d2�xNρ(�x, �R) �∇R+(�x − �R). (23)

Using Stokes theorem and the relation

�∇R+(�x − �R) = k̂ × (�x − �R)

|�x − �R|2 (24)

the following equation is finally obtained:

�FMagnus = 2πρsh̄k̂ × �̇R (25)

where ρs = Nρ0 is the number density.
Thus, a force is exerted on the vortex when it moves relative to the fluid density. This

Magnus force is proportional to and perpendicular to the vortex velocity, and proportional to
the fluid density. The Magnus force makes the vortex dynamics similar to that of charged
particles in a magnetic field, with the role of the magnetic field played by the fluid density.
This problem is discussed in our previous papers [8, 9]. However, it is interesting to point out
that in this formulation, the mass of the vortex in the canonical momentum �P was deliberately
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hidden. The mass of the vortex is still controversial; this is addressed in another paper [10].
In conclusion we have demonstrated that the origin of the Magnus force is an effect of the
transition amplitude of the supercurrent and is independent of the mutual interaction of the
boson. The quantum transition between states is a result of interaction between the vector
potenial of a vortex and a supercurrent or charged boson. The existence of the Magnus force
in a neutral fluid is an effect of pressure. This is the difference between the Magnus force in a
superconductor and that in a neutral fluid. These findings support the belief that the Magnus
force is a general property of the system.
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